Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298K from Quantum Mechanics Free Energy Calculations with Explicit Water.
نویسندگان
چکیده
Copper is the only elemental metal that reduces a significant fraction of CO2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions are not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). Here, we carry out Quantum Mechanics (QM) calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO2RR conditions) to examine the initial reaction pathways to form CO and formate (HCOO-) from CO2 through free energy calculations at 298K and pH 7. We find that CO formation proceeds from physisorbed CO2 to chemisorbed CO2 (*CO2δ-), with a free energy barrier of ΔG‡=0.43 eV, the rate determining step (RDS). The subsequent barriers of protonating *CO2δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 eV and 0.30 eV, respectively. HCOO- formation proceeds through a very different pathway in which physisorbed CO2 reacts directly with a surface H* (along with electron transfer), leading to ΔG‡ = 0.80 eV. Thus, the competition between CO formation and HCOO- formation occurs in the first electron transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Thus, to alter the product distribution we need to control this first step of CO2 binding, which might involve alloying or changing the structure at the nanoscale.
منابع مشابه
The formate and redox mechanisms of water-gas shift reaction on the surface of Ag: A nanocluster model based on DFT study
Two different possible mechanisms of water gas shift reaction including formate and redox mechanisms on the Ag5 cluster were investigated using DFT computations. All the elementary steps involved in both mechanisms were considered. It was observed that dissociation of H2Oads and OHads, as well as formation of CO2(ads), required activation e...
متن کاملFree-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0.
The great interest in the photochemical reduction from CO2 to fuels and chemicals has focused attention on Cu because of its unique ability to catalyze formation of carbon-containing fuels and chemicals. A particular goal is to learn how to modify the Cu catalysts to enhance the production selectivity while reducing the energy requirements (overpotential). To enable such developments, we report...
متن کاملKinetic Modeling of the High Temperature Water Gas Shift Reaction on a Novel Fe-Cr Nanocatalyst by Using Various Kinetic Mechanisms
In this work the kinetic data demanded for kinetic modeling were obtained in temperatures 350, 400, 450 and 500 oC by conducting experimentations on a Fe-Cr nanocatalyst prepared from a novel method and a commercial Fe-Cr-Cu one. The collected data were subjected to kinetic modeling by using two models derived from redox and associative mechanisms as well as an empirical one. The coefficients o...
متن کاملThe Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study
In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...
متن کاملTheoretical study of catalytic reduction of CO2 with H20 by BOC-MP method
Bond-Order Conservation-Morse Potential (BOC-MP) method is used to carry out the calculationon the CO2+ H20 system. One of the best catalysts for methanol synthesis in catalytic reductionof CO2 with H2O is Cu/ZnO/A1203 whose surface is supported by with some amount of Pd orGa. Reduction of CO2 with H20 on Cu will result in methanol formation; while on Ni will lead tomethane formation. In the me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره شماره
صفحات -
تاریخ انتشار 2016